Technology
An Introduction To Cloud Computing
July 24, 2021
June 7, 2022
Quantum computing was already gathering pace in Japan and elsewhere in Asia when the University of Tokyo and IBM launched their new quantum computer last year.
The computer was the second such system built outside the United States by IBM — the latest in a string of key moves in quantum research.
Quantum computing refers to the use of quantum mechanics to run calculations. Quantum computing can run multiple processes at once by using quantum bits, unlike binary bits which power traditional computing.
Challenging U.S. ‘hegemony’
The new technology will ultimately speed up the computational power that drives many industries and could affect everything from drug discovery to how data is secured. Several countries are racing to get quantum computers fully operational.
Christopher Savoie, CEO of quantum computing firm Zapata, who spent much of his career in Japan, said technological development has been very U.S.-centric. But now, Asian nations don’t want to be left behind on quantum computing, he added.
“Nation states like India, Japan and China are very much interested in not being the only folks without a capability there. They don’t want to see the kind of hegemony that’s arisen where the large cloud aggregators by and large are only US companies,” Savoie said, referring to the likes of Amazon Web Services and Microsoft Azure.
India, for its part, announced plans earlier this year to invest $1 billion in a five-year plan to develop a quantum computer in the country.
In March, Sanders published a report that found governments have pledged around $4.2 billion to support quantum research. Some notable examples include South Korea’s $40 million investment in the field and Singapore’s Ministry of Education’s funding of a research center, The Center for Quantum Technologies.
Where will it be used?
All of these efforts have a long lens on the future. And for some, the benefits of quantum can seem nebulous.
According to Sanders, the benefits of quantum computing aren’t going to be immediately evident for everyday consumers.
“What is likely to happen is that quantum computers will wind up utilized in designing products that consumers eventually buy.”
There are two major areas where quantum’s breakthrough will be felt — industry and defense.
A staff member of tech company Q.ant puts a chip for quantum computing in a test station in Stuttgart, Germany, on Sept. 14, 2021. It’s expected that the power of quantum computing will be able to decrypt RSA encryption, one of the most common encryption methods for securing data.
In pharmaceuticals, traditional systems for calculating the behavior of drug molecules can be time-consuming. The speed of quantum computing could rapidly increase these processes around drug discovery and, ultimately, the timeline for drugs coming to market.
Security challenges
On the flip side, quantum could present security challenges. As computing power advances, so too does the risk to existing security methods.
“The longer-term [motivation] but the one that that everyone recognizes as an existential threat, both offensively and defensively, is the cryptography area. RSA will be eventually compromised by this,” Savoie added.
RSA refers to one of the most common encryption methods for securing data, developed in 1977, that could be upended by quantum’s speed. It is named after its inventors — Ron Rivest, Adi Shamir and Leonard Adleman.
Magda Lilia Chelly, chief information security officer at Singaporean cybersecurity firm Responsible Cyber, told CNBC that there needs to be a twin track of encryption and quantum research and development so that security isn’t outpaced.
“Some experts believe that quantum computers will eventually be able to break all forms of encryption, while others believe that new and more sophisticated forms of encryption will be developed that cannot be broken by quantum computers,” Chelly said.
If successful, this would make it possible to break most current encryption schemes, making it possible to unlock messages that are encrypted.
Stop-start’ progress
Sanders said the development and eventual commercialization of quantum computing will not be a straight line.
Issues like the threat to encryption can garner attention from governments, but research and breakthroughs, as well as mainstream interest, can be “stop-start,” he said.
Progress can also be affected by fluctuating interest of private investors as quantum computing won’t deliver a quick return on investment.
Another looming challenge for quantum research is finding the right talent with specific skills for this research.
“Quantum scientists that can do quantum computing don’t grow on trees,” Savoie said, adding that cross-border collaboration is necessary in the face of competing government interests.
“Talent is global. People don’t get to choose what country they’re born in or what nationality they have.”
SOURCE: CNBC
IMAGE SOURCE: PIXABAY